Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575351

RESUMO

Interneuron loss is a prominent feature of temporal lobe epilepsy in both animals and humans and is hypothesized to be critical for epileptogenesis. As loss occurs concurrently with numerous other potentially proepileptogenic changes, however, the impact of interneuron loss in isolation remains unclear. For the present study, we developed an intersectional genetic approach to induce bilateral diphtheria toxin-mediated deletion of Vgat-expressing interneurons from dorsal and ventral hippocampus. In a separate group of mice, the same population was targeted for transient neuronal silencing with DREADDs. Interneuron ablation produced dramatic seizure clusters and persistent epileptiform activity. Surprisingly, after 1 week seizure activity declined precipitously and persistent epileptiform activity disappeared. Occasional seizures (≈1/day) persisted to the end of the experiment at 4 weeks. In contrast to the dramatic impact of interneuron ablation, transient silencing produced large numbers of interictal spikes, a significant but modest increase in seizure occurrence and changes in EEG frequency band power. Taken together, findings suggest that the hippocampus regains relative homeostasis-with occasional breakthrough seizures-in the face of an extensive and abrupt loss of interneurons.

2.
Front Neurol ; 14: 1280606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033777

RESUMO

Background: Acquired epilepsies are caused by an initial brain insult that is followed by epileptogenesis and finally the development of spontaneous recurrent seizures. The mechanisms underlying epileptogenesis are not fully understood. MicroRNAs regulate mRNA translation and stability and are frequently implicated in epilepsy. For example, antagonism of a specific microRNA, miR-324-5p, before brain insult and in a model of chronic epilepsy decreases seizure susceptibility and frequency, respectively. Here, we tested whether antagonism of miR-324-5p during epileptogenesis inhibits the development of epilepsy. Methods: We used the intrahippocampal kainic acid (IHpKa) model to initiate epileptogenesis in male wild type C57BL/6 J mice aged 6-8 weeks. Twenty-four hours after IHpKa, we administered a miR-324-5p or scrambled control antagomir intracerebroventricularly and implanted cortical surface electrodes for EEG monitoring. EEG data was collected for 28 days and analyzed for seizure frequency and duration, interictal spike activity, and EEG power. Brains were collected for histological analysis. Results: Histological analysis of brain tissue showed that IHpKa caused characteristic hippocampal damage in most mice regardless of treatment. Antagomir treatment did not affect latency to, frequency, or duration of spontaneous recurrent seizures or interictal spike activity but did alter the temporal development of frequency band-specific EEG power. Conclusion: These results suggest that miR-324-5p inhibition during epileptogenesis induced by status epilepticus does not convey anti-epileptogenic effects despite having subtle effects on EEG frequency bands. Our results highlight the importance of timing of intervention across epilepsy development and suggest that miR-324-5p may act primarily as a proconvulsant rather than a pro-epileptogenic regulator.

4.
eNeuro ; 10(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36759189

RESUMO

Hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway is linked to more than a dozen neurologic diseases, causing a range of pathologies, including excess neuronal growth, disrupted neuronal migration, cortical dysplasia, epilepsy and autism. The mTOR pathway also regulates angiogenesis. For the present study, therefore, we queried whether loss of Pten or Tsc2, both mTOR negative regulators, alters brain vasculature in three mouse models: one with Pten loss restricted to hippocampal dentate granule cells [DGC-Pten knock-outs (KOs)], a second with widespread Pten loss from excitatory forebrain neurons (FB-Pten KOs) and a third with focal loss of Tsc2 from cortical excitatory neurons (f-Tsc2 KOs). Total hippocampal vessel length and volume per dentate gyrus were dramatically increased in DGC-Pten knock-outs. DGC-Pten knock-outs had larger dentate gyri overall, however, and when normalized to these larger structures, vessel density was preserved. In addition, tests of blood-brain barrier integrity did not reveal increased permeability. FB-Pten KOs recapitulated the findings in the more restricted DGC-Pten KOs, with increased vessel area, but preserved vessel density. FB-Pten KOs did, however, exhibit elevated levels of the angiogenic factor VegfA. In contrast to findings with Pten, focal loss of Tsc2 from cortical excitatory neurons produced a localized increase in vessel density. Together, these studies demonstrate that hypervascularization is not a consistent feature of mTOR hyperactivation models and suggest that loss of different mTOR pathway regulatory genes exert distinct effects on angiogenesis.


Assuntos
Epilepsia , Serina-Treonina Quinases TOR , Animais , Camundongos , Epilepsia/genética , Neurônios/metabolismo , Prosencéfalo/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Sirolimo , Serina-Treonina Quinases TOR/metabolismo
5.
Neurobiol Dis ; 178: 106014, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702319

RESUMO

Status epilepticus (SE) is a life-threatening medical emergency with significant morbidity and mortality. SE is associated with a robust and sustained increase in serum glucocorticoids, reaching concentrations sufficient to activate the dense population of glucocorticoid receptors (GRs) expressed among hippocampal excitatory neurons. Glucocorticoid exposure can increase hippocampal neuron excitability; however, whether activation of hippocampal GRs during SE exacerbates seizure severity remains unknown. To test this, a viral strategy was used to delete GRs from a subset of hippocampal excitatory neurons in adult male and female mice, producing hippocampal GR knockdown mice. Two weeks after GR knockdown, mice were challenged with the convulsant drug pilocarpine to induce SE. GR knockdown had opposing effects on early vs late seizure behaviors, with sex influencing responses. For both male and female mice, the onset of mild behavioral seizures was accelerated by GR knockdown. In contrast, GR knockdown delayed the onset of more severe convulsive seizures and death in male mice. Concordantly, GR knockdown also blunted the SE-induced rise in serum corticosterone in male mice. GR knockdown did not alter survival times or serum corticosterone in females. To assess whether loss of GR affected susceptibility to SE-induced cell death, within-animal analyses were conducted comparing local GR knockdown rates to local cell loss. GR knockdown did not affect the degree of localized neuronal loss, suggesting cell-intrinsic GR signaling neither protects nor sensitizes neurons to acute SE-induced death. Overall, the findings reveal that hippocampal GRs exert an anti-convulsant role in both males and females in the early stages of SE, followed by a switch to a pro-convulsive role for males only. Findings reveal an unexpected complexity in the interaction between hippocampal GR activation and the progression of SE.


Assuntos
Receptores de Glucocorticoides , Estado Epiléptico , Camundongos , Masculino , Feminino , Animais , Receptores de Glucocorticoides/metabolismo , Corticosterona , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Hipocampo/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo , Glucocorticoides/metabolismo , Pilocarpina/toxicidade , Convulsivantes
6.
Neurocrit Care ; 39(3): 655-668, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36539593

RESUMO

BACKGROUND: Spreading depolarizations (SDs) can be viewed at a cellular level using calcium imaging (CI), but this approach is limited to laboratory applications and animal experiments. Optical intrinsic signal imaging (OISI), on the other hand, is amenable to clinical use and allows viewing of large cortical areas without contrast agents. A better understanding of the behavior of OISI-observed SDs under different brain conditions is needed. METHODS: We performed simultaneous calcium and OISI of SDs in GCaMP6f mice. SDs propagate through the cortex as a pathological wave and trigger a neurovascular response that can be imaged with both techniques. We imaged both mechanically stimulated SDs (sSDs) in healthy brains and terminal SDs (tSDs) induced by system hypoxia and cardiopulmonary failure. RESULTS: We observed a lag in the detection of SDs in the OISI channels compared with CI. sSDs had a faster velocity than tSDs, and tSDs had a greater initial velocity for the first 400 µm when observed with CI compared with OISI. However, both imaging methods revealed similar characteristics, including a decrease in the sSD (but not tSD) velocities as the wave moved away from the site of initial detection. CI and OISI also showed similar spatial propagation of the SD throughout the image field. Importantly, only OISI allowed regional ischemia to be detected before tSDs occurred. CONCLUSIONS: Altogether, data indicate that monitoring either neural activity or intrinsic signals with high-resolution optical imaging can be useful to assess SDs, but OISI may be a clinically applicable way to predict, and therefore possibly mitigate, hypoxic-ischemic tSDs.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Camundongos , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Canais de Cálcio , Cálcio , Encéfalo , Isquemia
7.
J Mol Neurosci ; 72(6): 1243-1258, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35618880

RESUMO

Neuronal hyperactivation of the mTOR signaling pathway may play a role in driving the pathological sequelae that follow status epilepticus. Animal studies using pharmacological tools provide support for this hypothesis, however, systemic inhibition of mTOR-a growth pathway active in every mammalian cell-limits conclusions on cell type specificity. To circumvent the limitations of pharmacological approaches, we developed a viral/genetic strategy to delete Raptor or Rictor, inhibiting mTORC1 or mTORC2, respectively, from excitatory hippocampal neurons after status epilepticus in mice. Raptor or Rictor was deleted from roughly 25% of hippocampal granule cells, with variable involvement of other hippocampal neurons, after pilocarpine status epilepticus. Status epilepticus induced the expected loss of hilar neurons, sprouting of granule cell mossy fiber axons and reduced c-Fos activation. Gene deletion did not prevent these changes, although Raptor loss reduced the density of c-Fos-positive granule cells overall relative to Rictor groups. Findings demonstrate that mTOR signaling can be effectively modulated with this approach and further reveal that blocking mTOR signaling in a minority (25%) of granule cells is not sufficient to alter key measures of status epilepticus-induced pathology. The approach is suitable for producing higher deletion rates, and altering the timing of deletion, which may lead to different outcomes.


Assuntos
Epilepsia do Lobo Temporal , Aves Predatórias , Estado Epiléptico , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Mamíferos , Camundongos , Fibras Musgosas Hipocampais/patologia , Fibras Musgosas Hipocampais/fisiologia , Pilocarpina , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Aves Predatórias/metabolismo , Estado Epiléptico/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
J Comp Neurol ; 530(12): 2100-2112, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35397117

RESUMO

The hippocampus has become a significant target of stress research in recent years because of its role in cognitive functioning, neuropathology, and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Despite the pervasive impact of stress on psychiatric and neurological disease, many of the circuit- and cell-dependent mechanisms giving rise to the limbic regulation of the stress response remain unknown. Hippocampal excitatory neurons generally express high levels of glucocorticoid receptors (GRs) and are therefore positioned to respond directly to serum glucocorticoids. These neurons are, in turn, regulated by neighboring interneurons, subtypes of which have been shown to respond to stress exposure. However, GR expression among hippocampal interneurons is not well characterized. To determine whether key interneuron populations are direct targets for glucocorticoid action, we used two transgenic mouse lines to label parvalbumin-positive (PV+) and somatostatin-positive (SST+) interneurons. GR immunostaining of labeled interneurons was characterized within the dorsal and ventral dentate hilus, dentate cell body layer, and CA1 and CA3 stratum oriens and stratum pyramidale. While nearly all hippocampal SST+ interneurons expressed GR across all regions, GR labeling of PV+ interneurons showed considerable subregion variability. The percentage of PV+, GR+ cells was highest in the CA3 stratum pyramidale and lowest in the CA1 stratum oriens, with other regions showing intermediate levels of expression. Together, these findings indicate that, under baseline conditions, hippocampal SST+ interneurons are a ubiquitous glucocorticoid target, while only distinct populations of PV+ interneurons are direct targets. This anatomical diversity suggests functional differences in the regulation of stress-dependent hippocampal responses.


Assuntos
Glucocorticoides , Interneurônios , Animais , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos , Neurônios/metabolismo , Parvalbuminas/metabolismo
9.
Cell Mol Neurobiol ; 42(4): 1253-1260, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33184769

RESUMO

Spreading depolarizations (SDs) are massive breakdowns of ion homeostasis in the brain's gray matter and are a necessary pathologic mechanism for lesion development in various injury models. However, injury-induced SDs also propagate into remote, healthy tissue where they do not cause cell death, yet their functional long-term effects are unknown. Here we induced SDs in uninjured cortex and hippocampus of Sprague-Dawley rats to study their impact on glutamate receptor subunit expression after three days. We find that both cortical and hippocampal tissue exhibit changes in glutamate receptor subunit expression, including GluA1 and GluN2B, suggesting that SDs in healthy brain tissue may have a role in plasticity. This study is the first to show prolonged effects of SDs on glutamate signaling and has implications for neuroprotection strategies aimed at SD suppression.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Animais , Encéfalo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ácido Glutâmico/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato
10.
Epilepsy Curr ; 21(5): 363-365, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34924837
11.
Exp Neurol ; 341: 113703, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33745919

RESUMO

OBJECTIVE: Glucocorticoid levels rise rapidly following status epilepticus and remain elevated for weeks after the injury. To determine whether glucocorticoid receptor activation contributes to the pathological sequelae of status epilepticus, mice were treated with a novel glucocorticoid receptor modulator, C108297. METHODS: Mice were treated with either C108297 or vehicle for 10 days beginning one day after pilocarpine-induced status epilepticus. Baseline and stress-induced glucocorticoid secretion were assessed to determine whether hypothalamic-pituitary-adrenal axis hyperreactivity could be controlled. Status epilepticus-induced pathology was assessed by quantifying ectopic hippocampal granule cell density, microglial density, astrocyte density and mossy cell loss. Neuronal network function was examined indirectly by determining the density of Fos immunoreactive neurons following restraint stress. RESULTS: Treatment with C108297 attenuated corticosterone hypersecretion after status epilepticus. Treatment also decreased the density of hilar ectopic granule cells and reduced microglial proliferation. Mossy cell loss, on the other hand, was not prevented in treated mice. C108297 altered the cellular distribution of Fos protein but did not restore the normal pattern of expression. INTERPRETATION: Results demonstrate that baseline corticosterone levels can be normalized with C108297, and implicate glucocorticoid signaling in the development of structural changes following status epilepticus. These findings support the further development of glucocorticoid receptor modulators as novel therapeutics for the prevention of brain pathology following status epilepticus.


Assuntos
Compostos Aza/uso terapêutico , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Receptores de Glucocorticoides/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Animais , Compostos Aza/farmacologia , Relação Dose-Resposta a Droga , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Pilocarpina/toxicidade , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inibidores , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico
12.
Br J Anaesth ; 126(5): 1009-1021, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33722372

RESUMO

BACKGROUND: Structural brain abnormalities in newborn animals after prolonged exposure to all routinely used general anaesthetics have raised substantial concerns for similar effects occurring in millions of children undergoing surgeries annually. Combining a general anaesthetic with non-injurious sedatives may provide a safer anaesthetic technique. We tested dexmedetomidine as a mitigating therapy in a sevoflurane dose-sparing approach. METHODS: Neonatal rats were randomised to 6 h of sevoflurane 2.5%, sevoflurane 1% with or without three injections of dexmedetomidine every 2 h (resulting in 2.5, 5, 10, 25, 37.5, or 50 µg kg-1 h-1), or fasting in room air. Heart rate, oxygen saturation, level of hypnosis, and response to pain were measured during exposure. Neuronal cell death was quantified histologically after exposure. RESULTS: Sevoflurane at 2.5% was more injurious than at 1% in the hippocampal cornu ammonis (CA)1 and CA2/3 subfields; ventral posterior and lateral dorsal thalamic nuclei; prefrontal, retrosplenial, and somatosensory cortices; and subiculum. Although sevoflurane 1% did not provide complete anaesthesia, supplementation with dexmedetomidine dose dependently increased depth of anaesthesia and diminished responses to pain. The combination of sevoflurane 1% and dexmedetomidine did not reliably reduce neuronal apoptosis relative to an equianaesthetic dose of sevoflurane 2.5%. CONCLUSIONS: A sub-anaesthetic dose of sevoflurane combined with dexmedetomidine achieved a level of anaesthesia comparable with that of sevoflurane 2.5%. Similar levels of anaesthesia caused comparable programmed cell death in several developing brain regions. Depth of anaesthesia may be an important factor when comparing the neurotoxic effects of different anaesthetic regimens.


Assuntos
Anestésicos Inalatórios/toxicidade , Dexmedetomidina/farmacologia , Hipnóticos e Sedativos/farmacologia , Sevoflurano/toxicidade , Anestésicos Inalatórios/administração & dosagem , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Morte Celular/efeitos dos fármacos , Dexmedetomidina/administração & dosagem , Relação Dose-Resposta a Droga , Hipnóticos e Sedativos/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Ratos , Ratos Wistar , Sevoflurano/administração & dosagem
13.
Prog Neurobiol ; 200: 101974, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33309800

RESUMO

Mutations in genes regulating mTOR pathway signaling are now recognized as a significant cause of epilepsy. Interestingly, these mTORopathies are often caused by somatic mutations, affecting variable numbers of neurons. To better understand how this variability affects disease phenotype, we developed a mouse model in which the mTOR pathway inhibitor Pten can be deleted from 0 to 40 % of hippocampal granule cells. In vivo, low numbers of knockout cells caused focal seizures, while higher numbers led to generalized seizures. Generalized seizures coincided with the loss of local circuit interneurons. In hippocampal slices, low knockout cell loads produced abrupt reductions in population spike threshold, while spontaneous excitatory postsynaptic currents and circuit level recurrent activity increased gradually with rising knockout cell load. Findings demonstrate that knockout cells load is a critical variable regulating disease phenotype, progressing from subclinical circuit abnormalities to electrobehavioral seizures with secondary involvement of downstream neuronal populations.


Assuntos
Epilepsia , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Convulsões , Serina-Treonina Quinases TOR/metabolismo
14.
Exp Neurol ; 334: 113437, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32822706

RESUMO

The voltage-gated potassium channel Kv4.2 is a critical regulator of dendritic excitability in the hippocampus and is crucial for dendritic signal integration. Kv4.2 mRNA and protein expression as well as function are reduced in several genetic and pharmacologically induced rodent models of epilepsy and autism. It is not known, however, whether reduced Kv4.2 is just an epiphenomenon or a disease-contributing cause of neuronal hyperexcitability and behavioral impairments in these neurological disorders. To address this question, we used male and female mice heterozygous for a Kv.2 deletion and adult-onset manipulation of hippocampal Kv4.2 expression in male mice to assess the role of Kv4.2 in regulating neuronal network excitability, morphology and anxiety-related behaviors. We observed a reduction in dendritic spine density and reduced proportions of thin and stubby spines but no changes in anxiety, overall activity, or retention of conditioned freezing memory in Kv4.2 heterozygous mice compared with wildtype littermates. Using EEG analyses, we showed elevated theta power and increased spike frequency in Kv4.2 heterozygous mice under basal conditions. In addition, the latency to onset of kainic acid-induced seizures was significantly shortened in Kv4.2 heterozygous mice compared with wildtype littermates, which was accompanied by a significant increase in theta power. By contrast, overexpressing Kv4.2 in wildtype mice through intrahippocampal injection of Kv4.2-expressing lentivirus delayed seizure onset and reduced EEG power. These results suggest that Kv4.2 is an important regulator of neuronal network excitability and dendritic spine morphology, but not anxiety-related behaviors. In the future, manipulation of Kv4.2 expression could be used to alter seizure susceptibility in epilepsy.


Assuntos
Espinhas Dendríticas/metabolismo , Eletroencefalografia/métodos , Hipocampo/metabolismo , Convulsões/metabolismo , Canais de Potássio Shal/biossíntese , Animais , Feminino , Predisposição Genética para Doença , Células HEK293 , Hipocampo/citologia , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Convulsões/genética , Convulsões/fisiopatologia , Canais de Potássio Shal/genética
15.
Neurobiol Dis ; 144: 105026, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32712265

RESUMO

Epilepsy affects all ages, races, genders, and socioeconomic groups. In about one third of patients, epilepsy is uncontrolled with current medications, leaving a vast need for improved therapies. The causes of epilepsy are diverse and not always known but one gene mutated in a small subpopulation of patients is phosphatase and tensin homolog (PTEN). Moreover, focal cortical dysplasia, which constitutes a large fraction of refractory epilepsies, has been associated with signaling defects downstream of PTEN. So far, most preclinical attempts to reverse PTEN deficiency-associated neurological deficits have focused on mTOR, a signaling hub several steps downstream of PTEN. Phosphoinositide 3-kinases (PI3Ks), by contrast, are the direct enzymatic counteractors of PTEN, and thus may be alternative treatment targets. PI3K activity is mediated by four different PI3K catalytic isoforms. Studies in cancer, where PTEN is commonly mutated, have demonstrated that inhibition of only one isoform, p110ß, reduces progression of PTEN-deficient tumors. Importantly, inhibition of a single PI3K isoform leaves critical functions of general PI3K signaling throughout the body intact. Here, we show that this disease mechanism-targeted strategy borrowed from cancer research rescues or ameliorates neuronal phenotypes in male and female mice with neuron-specific PTEN deficiency. These phenotypes include cell signaling defects, protein synthesis aberrations, seizures, and cortical dysplasia. Of note, p110ß is also dysregulated and a promising treatment target in the intellectual disability Fragile X syndrome, pointing towards a shared biological mechanism that is therapeutically targetable in neurodevelopmental disorders of different etiologies. Overall, this work advocates for further assessment of p110ß inhibition not only in PTEN deficiency-associated neurodevelopmental diseases but also other brain disorders characterized by defects in the PI3K/mTOR pathway.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Epilepsia/fisiopatologia , Neurônios/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Epilepsia/genética , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Megalencefalia/fisiopatologia , Camundongos , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/genética , Quinazolinas/farmacologia , Convulsões/fisiopatologia , Tiazóis/farmacologia
16.
Br J Anaesth ; 123(6): 818-826, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31570162

RESUMO

BACKGROUND: Studies in developing animals show that a clinically relevant anaesthesia exposure increases neuronal death and alters brain structure. In the hippocampal dentate gyrus, the anaesthetic isoflurane induces selective apoptosis among roughly 10% of 2-week-old hippocampal granule cells in 21-day-old mice. In this work, we queried whether the 90% of granule cells surviving the exposure might be 'injured' and integrate abnormally into the brain. METHODS: The long-term impact of isoflurane exposure on granule cell structure was studied using a transgenic mouse model fate-mapping approach to identify and label immature granule cells. Male and female mice were exposed to isoflurane for 6 h when the fate-mapped granule cells were 2 weeks old. The morphology of the fate-mapped granule cells was quantified 2 months later. RESULTS: The gross structure of the dentate gyrus was not affected by isoflurane treatment, with granule cells present in the correct subregions. Individual isoflurane-exposed granule cells were structurally normal, exhibiting no changes in spine density, spine type, dendrite length, or presynaptic axon terminal structure (P>0.05). Granule cell axon terminals were 13% larger in female mice relative to males; however, this difference was evident regardless of treatment (difference of means=0.955; 95% confidence interval, 0.37-1.5; P=0.010). CONCLUSIONS: A single, prolonged isoflurane exposure did not impair integration of this age-specific cohort of granule cells, regardless of the animal's sex. Nonetheless, although 2-week-old cells were not affected, the results should not be extrapolated to other age cohorts, which may respond differently.


Assuntos
Anestésicos Inalatórios/efeitos adversos , Hipocampo/efeitos dos fármacos , Isoflurano/efeitos adversos , Neurônios/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos
17.
Epilepsy Curr ; 19(6): 405-407, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31495197

RESUMO

[Box: see text].

18.
Epilepsy Curr ; 19(5): 316-320, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31409149

RESUMO

Compelling evidence indicates that hippocampal dentate granule cells are generated throughout human life and into old age. While animal studies demonstrate that these new neurons are important for memory function, animal research also implicates these cells in the pathogenesis of temporal lobe epilepsy. Several recent preclinical studies in rodents now suggest that targeting these new neurons can have disease-modifying effects in epilepsy.

19.
Exp Neurol ; 321: 113029, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31377403

RESUMO

Hyperactivation of the mechanistic target of rapamycin (mTOR) pathway is associated with epilepsy, autism and brain growth abnormalities in humans. mTOR hyperactivation often results from developmental somatic mutations, producing genetic lesions and associated dysfunction in relatively restricted populations of neurons. Disrupted brain regions, such as those observed in focal cortical dysplasia, can contain a mix of normal and mutant cells. Mutant cells exhibit robust anatomical and physiological changes. Less clear, however, is whether adjacent, initially normal cells are affected by the presence of abnormal cells. To explore this question, we used a conditional, inducible mouse model approach to delete the mTOR negative regulator phosphatase and tensin homolog (PTEN) from <1% to >30% of hippocampal dentate granule cells. We then examined the morphology of PTEN-expressing granule cells located in the same dentate gyri as the knockout (KO) cells. Despite the development of spontaneous seizures in higher KO animals, and disease worsening with increasing age, the morphology and physiology of PTEN-expressing cells was only modestly affected. PTEN-expressing cells had smaller somas than cells from control animals, but other parameters were largely unchanged. These findings contrast with the behavior of PTEN KO cells, which show increasing dendritic extent with greater KO cell load. Together, the findings indicate that genetically normal neurons can exhibit relatively stable morphology and intrinsic physiology in the presence of nearby pathological neurons and systemic disease.


Assuntos
Giro Denteado/metabolismo , Giro Denteado/patologia , Neurônios/metabolismo , Neurônios/patologia , PTEN Fosfo-Hidrolase/deficiência , Animais , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Serina-Treonina Quinases TOR/metabolismo
20.
Neurobiol Dis ; 130: 104508, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31212067

RESUMO

Epilepsy is often associated with altered expression or function of ion channels. One example of such a channelopathy is the reduction of A-type potassium currents in the hippocampal CA1 region. The underlying mechanisms of reduced A-type channel function in epilepsy are unclear. Here, we show that inhibiting a single microRNA, miR-324-5p, which targets the pore-forming A-type potassium channel subunit Kv4.2, selectively increased A-type potassium currents in hippocampal CA1 pyramidal neurons in mice. Resting membrane potential, input resistance and other potassium currents were not altered. In a mouse model of acquired chronic epilepsy, inhibition of miR-324-5p reduced the frequency of spontaneous seizures and interictal epileptiform spikes supporting the physiological relevance of miR-324-5p-mediated control of A-type currents in regulating neuronal excitability. Mechanistic analyses demonstrated that microRNA-induced silencing of Kv4.2 mRNA is increased in epileptic mice leading to reduced Kv4.2 protein levels, which is mitigated by miR-324-5p inhibition. By contrast, other targets of miR-324-5p were unchanged. These results suggest a selective miR-324-5p-dependent mechanism in epilepsy regulating potassium channel function, hyperexcitability and seizures.


Assuntos
Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , MicroRNAs/metabolismo , Convulsões/fisiopatologia , Canais de Potássio Shal/metabolismo , Regulação para Cima , Animais , Modelos Animais de Doenças , Epilepsia/metabolismo , Hipocampo/metabolismo , Camundongos , MicroRNAs/genética , Convulsões/metabolismo , Canais de Potássio Shal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...